

TFT LCD Module Product Specification

DT028BTFT-PTS2

2.8" (240RGB x 320 DOTS) TFT Module with Projected Capacitive Touch Screen

November 3, 2020

Remark:

Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Displaytech.

Displaytech

Email: sales@displaytech.com.hk
Website: http://www.displaytech.com.hk

Revision Record

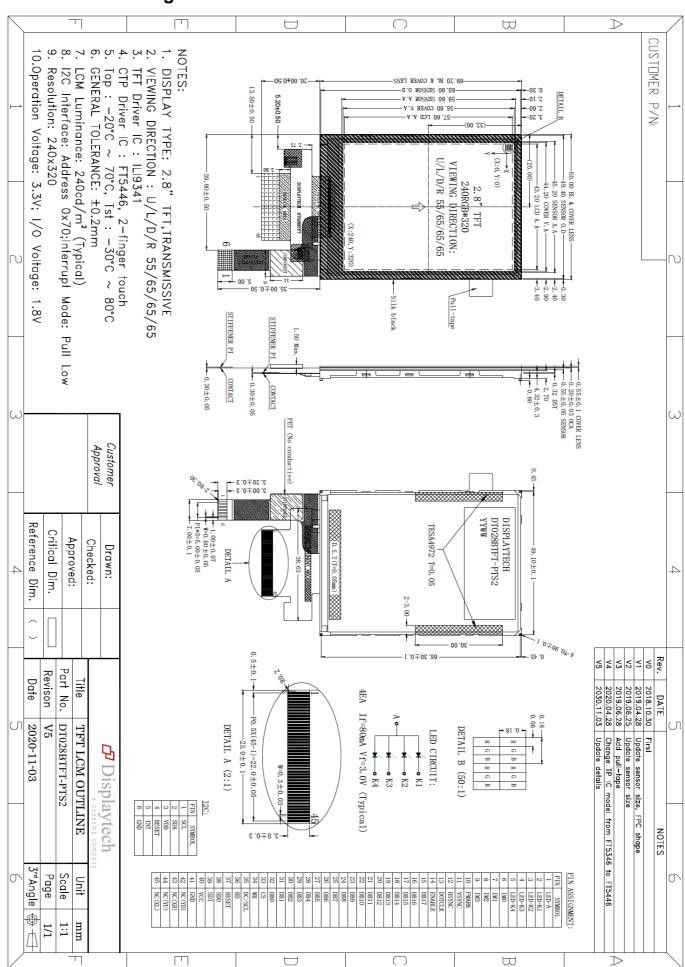
REV	CHANGES	DATE
1.1	First release	Jul 5, 2019
2.0	Changed the P/N from DT028BTFT-PTS1 to DT028BTFT-PTS2	Apr 28, 2020
	Updated CTP driver IC from FT5346 to FT5446 in section 3 and 4.	
2.1	Updated the drawing details;	Nov 3, 2020
	Corrected CTP signal description.	

Table of Content

Re	visior	n Record	1
1.	Sco	pe	3
2.	App	olication	3
3.	Ger	neral Information	3
4.	Out	line Drawing	4
5.	Inte	rface signals	5
6.	Abs	solute maximum Ratings	6
	6.1 Ele	ectrical Absolute max. ratings	6
	6.2 En	vironment Conditions	6
7.	Elec	ctrical Specifications	7
	7.1 Ele	ectrical characteristics	7
	7.2 LE	D Backlight	7
8.	Cor	nmand/AC Timing	8
		Characteristics	
	8.2 I	Reset Timing	13
9.	Opt	ical Specification	15
10	. Env	rironmental / Reliability Tests	17
11	. Pre	cautions for Use of LCD Modules	18
	11.1	Safety	18
	11.2	Handling	18
	11.3	Static Electricity	
	11.4	Storage	18
	11.5	Cleaning	18
	11.6	Cautions for installing and assembling	19

1. Scope

This data sheet is to introduce the specification of DT028BTFT-PTS2 active matrix TFT module. It is composed of a color TFT-LCD panel, driver ICs, FPC, CTP and a backlight unit. The 2.8" display area contains 240(RGB) x 320 pixels.


2. Application

Digital equipments which need color display, mobile navigator/video systems.

3. General Information

Item	Contents	Unit
Size	2.8	inch
Resolution	240(RGB)*320	I
Interface	RGB/MCU	I
Technology type	a-Si TFT	1
Pixel Configuration	R.G.B Vertical Stripe	
Outline Dimension (W x H x D)	50.0 x 69.2 x 4.32	mm
Active Area	43.2 x 57.60	mm
Display Mode	Transmissive	1
Backlight Type	LED	1
TFT Driver IC	ILI9341	I
CTP Driver IC	FT5446	1
Viewing direction	U/L/D/R 55/65/65	I

4. Outline Drawing

5. Interface signals

Recommended mating connector: FH12S-45S-0.5SH (or equivalent)

Pin No.	Symbol	I/O	Function
1	LED-A	Р	LED back light(Anode)
2-5	LED-K1-LED-K4	Р	LED back light(Cathode)
6-9	IM0-IM3	I	System interface select. Note1
10	FMARK	0	Tearing effect output pin to synchronize MPU to frame writing, activate by S/W command. Normally Low. Leave open when not in use.
11	VSYNC	I	Frame sync signal For RGB interface operation. Fix to VDD or VSS when not in use.
12	HSYNC	I	Line sync signal For RGB interface operation. Fix to VDD or VSS when not in use.
13	DOTCLK	I	Data clock For RGB interface operation. Fix to VDD or VSS when not in use.
14	ENABLE	I	Data enable pin For RGB interface operation. Fix to VDD or VSS when not in use.
15-32	DB17-DBO	I	18-bit parallel data bus for MCU system and RGB interface modes. Fix to VSS when not in use. Refer to Note1 for interface selection.
33	CS	I	Chip select signal: Active low
34	WR	I	8080-I/8080-II Parallel interface: write signal. 4-wire serial interface: Command/Parameter select. Fix to VDD when not in use.
35	DC/SCL	I	8080-I/8080-II Parallel interface: Data/Command select (DCX=1→Data select. DCX=0→Command select.) 3-wire9-bit/4-wire 8-bit serial interface: Serial clock. Fix to VDD or VSS when not in use.
36	RD	I	8080-I/8080-II Parallel interface: Read signal. Fix to VDD when not in use.
37	RESET	I	System Reset Active Low
38	SDO	0	Serial data output in serial bus system interface. Leave open when not in use.
39	SDI	I	Serial input signal IM[3] Low: Serial in/out, IM[3] High: Serial input. Fix to VDD or VSS when not in use.
40	VCC	Р	Power supply
41	GND	Р	Ground.
42	YD(NC)	0	
43	XR(NC)	0	Taurah aantuul min
44	YU(NC)	0	Touch control pin
45	XL(NC)	0	

Note 1:

IM3	IM2	IM1	IMO	Interface	DB Pi	n in use	
IIVIS	IIVIZ	IIVI I	11010	interrace	Register/Content	GRAM	
0	0	0	0	80 MCU 8-bit bus interface I	DB[7:0]	DB[7:0]	
0	0	0	1	80 MCU 16-bit bus interface I	DB[7:0]	DB[15:0]	
0	0	1	0	80 MCU 9-bit bus interface I	DB[7:0]	DB[8:0]	
0	0	1	1	80 MCU 18-bit bus interface I	DB[7:0] DB[17:0]		
0	1	0	1	3-line 9-bit data serial interface I	SDA: In/Out		
0	1	1	0	4-line 8-bit data serial interface I	SDA	: In/Out	
1	0	0	0	80 MCU 16-bit bus interface II	DB[8:1]	DB[17:10] DB[8:1]	
1	0	0	1	80 MCU 8-bit bus interface Ⅱ	DB[17:10]	DB[17:10]	
1	0	1	0	80 MCU 18-bit bus interface II	DB[8:1] DB[17:0]		
1	0	1	1	80 MCU 9-bit bus interface Ⅱ	DB[17:10] DB[17:9]		
1	1	0	1	3-line 9-bit data serial interface Ⅱ	SDI: In, SDO: Out		
1	1	1	0	4-line 8-bit data serial interface Ⅱ	SDI: In,	SDO: Out	

Must select Serial MCU(system) interface to use RGB data interface.

CTP Interface Signal:

Pin No.	Symbol	Function
1	SCL	I ² C clock signal
2	SDA	I ² C data signal
3	VDD	Power supply for TP
4	RESET	External Reset/Wake. Active low.
5	INT	Interrupt output pin. Active low
6	GND	Power ground

Recommended mating connector: FH12-6S-1SH(55) (or equivalent)

6. Absolute maximum Ratings

6.1 Electrical Absolute max. ratings

Parameter	Symbol	MIN	MAX	Unit	Remark
Power Supply Voltage	VCC	-0.3	4.6	V	
Logic Supply Voltage	VDD	-0.3	4.6	V	
PCAP Supply Voltage	VPCAP	-0.3	3.6	V	

6.2 Environment Conditions

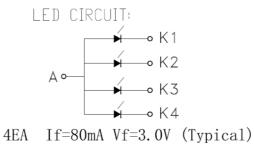
Item	Symbol	MIN	MAX	Unit	Remark
Operating Temperature	TOPR	-20	70	$^{\circ}$ C	
Storage Temperature	TSTG	-30	80	$^{\circ}$ C	

7. Electrical Specifications

7.1 Electrical characteristics

GND=0V, Ta=25℃

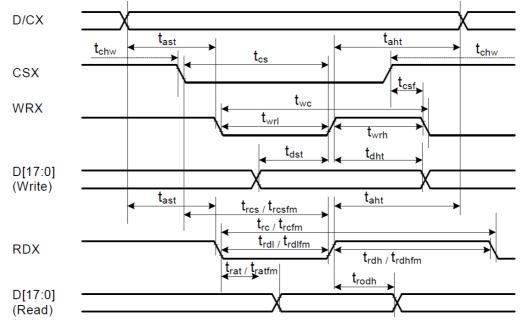
Item	Symbol	MIN	TYP	MAX	Unit	Remark
Power Supply	VCC	2.5	2.8	3.3	V	
Input Cianal Valtage	VIL	0		0.3*VCC	V	
Input Signal Voltage	VIH	0.7*VCC		VCC	V	
Output Signal Voltage	VOL	0		0.2*VCC	V	
Output Signal Voltage	VOH	0.8*VCC	-	VCC	V	


7.2 LED Backlight

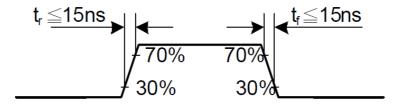
Ta=25°C

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	IF	-	80	-	mA	
Forward Voltage	VF	-	3.0	-	V	
LED life time		-	30000	-	Hr	Note

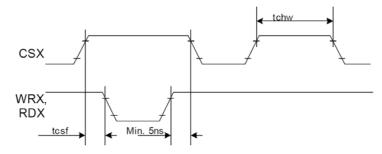
Notes:


1: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25 $^{\circ}$ C and IL =80mA. The LED lifetime could be decreased if operating IL is larger than 80mA.

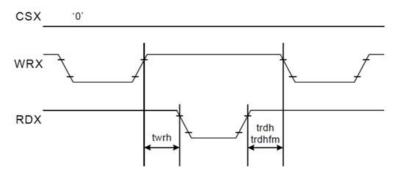
8. Command/AC Timing


8.1 AC Characteristics

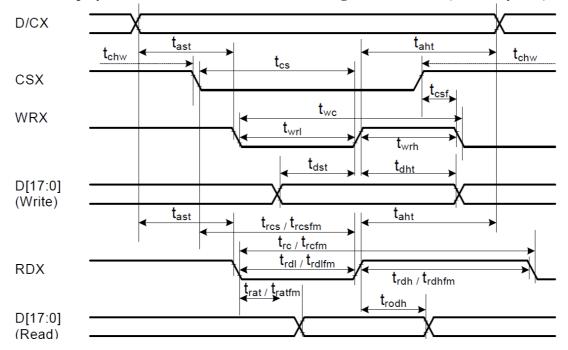
8.1.1 Display Parallel 18/16/9/8-bit Interface Timing Characteristics (8080-I system)



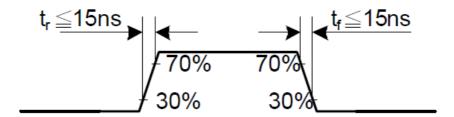
Signal	Symbol	Parameter	min	max	Unit	Description
DCV	tast	Address setup time	0	-	ns	
DCX	taht	Address hold time (Write/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trosfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
547.01	tdst	Write data setup time	10	-	ns	
D[17:0],	tdht	Write data hold time	10	-	ns	5
D[15:0],	trat	Read access time	-	40	ns	For maximum CL=30pF
D[8:0],	tratfm	Read access time	-	340	ns	For minimum CL=8pF
D[7:0]	trod	Read output disable time	20	80	ns	


Note: Ta = -30 to 70 $^{\circ}$ C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V

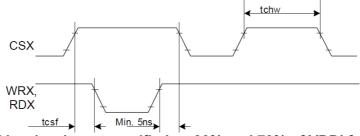
CSX timings:



Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals. Write to read or read to write timings:

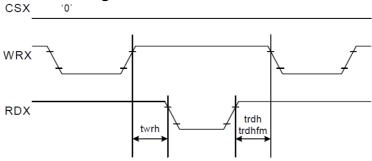

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

8.1.2 Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080- II system)

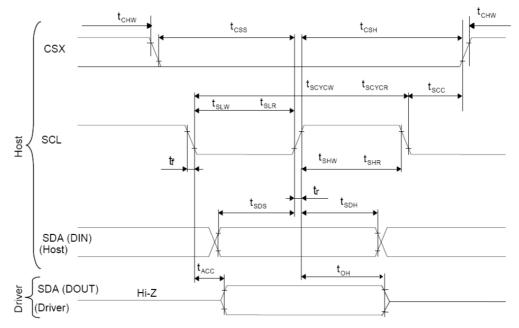


Signal	Symbo	Parameter	min	max	Unit	Description
DOV	tast	Address setup time	0	-	ns	
DCX	taht	Address hold time (Write/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
CSX	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
	twc	Write cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trcfm	Read Cycle (FM)	450	-	ns	
RDX (FM)	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
	trc	Read cycle (ID)	160	-	ns	
RDX (ID)	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
D(47.0)	tdst	Write data setup time	10	-	ns	
D[17:0],	tdht	Write data hold time	10	-	ns	For movimum CL =30nF
D[17:10]&D[8:1],	trat	Read access time	1	40	ns	For maximum CL=30pF
D[17:10], D[17:9]	tratfm	Read access time	1	340	ns	For minimum CL=8pF
D[17.8]	trod	Read output disable time	20	80	ns	

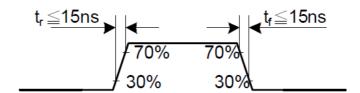
Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V.



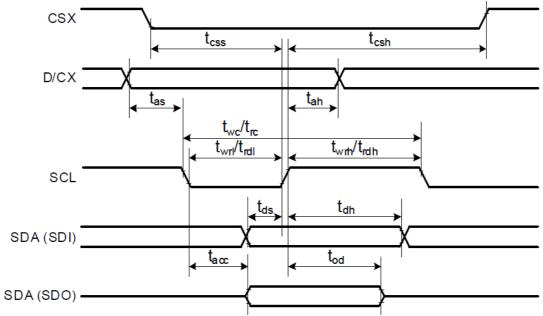
CSX timings:


Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

Write to read or read to write timings:

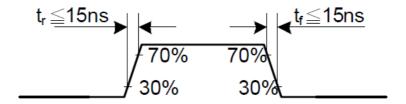

Note: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

8.1.3 Display Serial Interface Timing Characteristics (3-line SPI system)

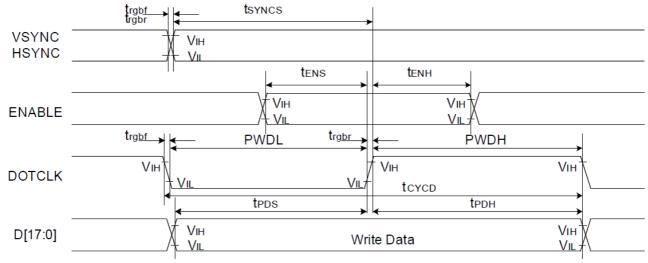


Signal	Symbol	Parameter	min	max	Unit	Description
	tscycw	Serial Clock Cycle (Write)	100	-	ns	
	tshw	SCL "H" Pulse Width (Write)	40	-	ns	
SCL	tslw	SCL "L" Pulse Width (Write)	40	-	ns	
SCL	tscycr	Serial Clock Cycle (Read)	150	-	ns	
	tshr	SCL "H" Pulse Width (Read)	60	-	ns	
	tslr	SCL "L" Pulse Width (Read)	60	-	ns	
SDA / SDI	tsds	Data setup time (Write)	30	-	ns	
(Input)	tsdh	Data hold time (Write)	30	-	ns	
SDA / SDO	tacc	Access time (Read)	10	-	ns	
(Output)	toh	Output disable time (Read)	10	50	ns	
	tscc	SCL-CSX	20	-	ns	
001/	tchw	CSX "H" Pulse Width	40	-	ns	
CSX	tcss	CSV SCI Times	60	-	ns	
	tcsh	CSX-SCL Time	65	-	ns	

Note: Ta = 25 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

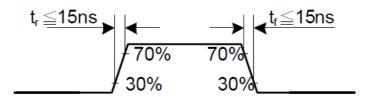


8.1.4 Display Serial Interface Timing Characteristics (4-line SPI system)

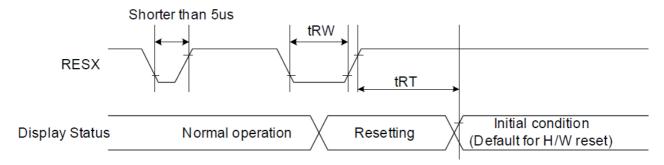


Signal	Symbol	Parameter	min	max	Unit	Description
CSX	tcss	Chip select time (Write)	40	-	ns	
CSX	tcsh	Chip select hold time (Read)	40	-	ns	
	twc	Serial clock cycle (Write)	100	-	ns	
	twrh	SCL "H" pulse width (Write)	40	-	ns	
SCL	twrl	SCL "L" pulse width (Write)	40	-	ns	
SCL	trc	Serial clock cycle (Read)	150	-	ns	
	trdh	SCL "H" pulse width (Read)	60	-	ns	
trdl		SCL "L" pulse width (Read)	60	-	ns	
DIOV	tas	D/CX setup time	10	-		
D/CX	tah	D/CX hold time (Write / Read)	10	-		
SDA / SDI	tds	Data setup time (Write)	30	-	ns	
(Input)	tdh	Data hold time (Write)	30	-	ns	
SDA / SDO	DA / SDO tacc Access time (Read) 10 - ns		ns	For maximum CL=30pF		
(Output)	tod	Output disable time (Read)	10	50	ns	For minimum CL=8pF

Note: Ta = 25 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V



8.1.5 Parallel 18/16/6-bit RGB Interface Timing Characteristics

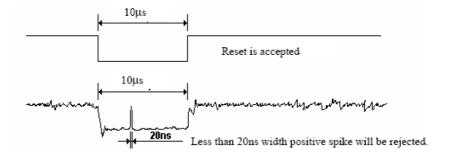


Signal	Symbol	Parameter	min	max	Unit	Description	
VSYNC /	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns		
HSYNC	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns		
DE	t _{ENS}	DE setup time	15	-	ns		
DE	t _{ENH}	DE hold time	15	-	ns		
D[47:0]	t _{POS}	Data setup time	15	-	ns	18/16-bit bus RGB	
D[17:0]	t _{PDH}	Data hold time	15	-	ns	interface mode	
	PWDH	DOTCLK high-level period	15	-	ns		
DOTOLK	PWDL	DOTCLK low-level period	15	-	ns		
DOTCLK	t _{CYCD}	DOTCLK cycle time	100	-	ns		
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns		
VSYNC /	tsyncs	VSYNC/HSYNC setup time	15	-	ns		
HSYNC	tsynch	VSYNC/HSYNC hold time	15	-	ns		
DE	t _{ENS}	DE setup time	15	-	ns		
DE	t _{ENH}	DE hold time	15	-	ns		
D[47.0]	t _{POS}	Data setup time	15	-	ns	6-bit bus RGB	
D[17:0]	t _{PDH}	Data hold time	15	-	ns	interface mode	
	PWDH	DOTCLK high-level pulse period	15	-	ns		
DOTCLK	PWDL	DOTCLK low-level pulse period	15	-	ns		
DOTCLK	tcycD	DOTCLK cycle time	50	-	ns		
	t _{rgbr} , t _{rgbf}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns		

Note: Ta = -30 to 70 °C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

8.2 Reset Timing

Signal	Symbol	Parameter	Min	Max	Unit
RESX	tRW	Reset pulse duration	10		uS
4DT	tDT Depart connect		5 (note 1,5)	mS	
	tRT	Reset cancel		120 (note 1,6,7)	mS


Note 1: The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NV memory to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.

Note 2: Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 10us	Reset
Between 5us and 10us	Reset starts

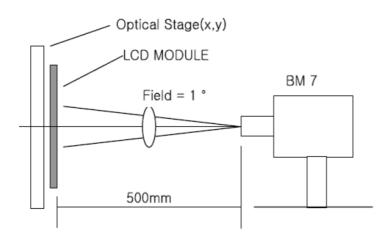
Note 3: During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In -mode.) And then return to Default condition for Hardware Reset.

Note 4: Spike Rejection also applies during a valid reset pulse as shown below:

Note 5: When Reset applied during Sleep In Mode.

Note 6: When Reset applied during Sleep Out Mode.

Note 7: It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

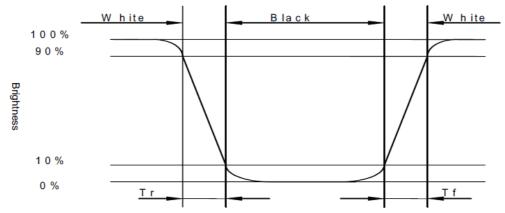

9. Optical Specification

Ta=25℃

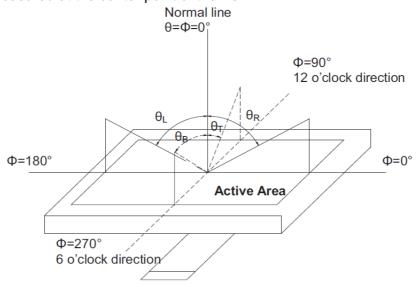
Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
Contrast Ratio		CR	Θ=00	300	500	_		Note1
- Contract Ratio	Contrast realio		0 0	000				Note2
Response Tir	nα	Tr	25℃	-	10	-	ms	Note1
ixesponse iii	116	Tf	25 0		10	-	ms	Note3
		ΘΤ		ı	55	1		
View Angles		ΘВ	CR≧10	-	65	•	Degree	Note4
view Angles		ΘL	CK=10	-	65	-		
		ΘR		-	65	-		
	White	X			0.28	-		
		Υ			0.33	-		
	Red	Х	Brightness is on		0.51	-	C	Note5 Note1
Chromoticity		Υ			0.34	-		
Chromaticity	Green	Х			0.31	-		
		Υ			0.56	-		
		Х			0.15	-		
	Blue	Υ			0.14	-		
NTSC		S		50	60	-	%	Note5
Luminanaa					240		ad/m2	Note1
Luminance		L			210		cd/m2	Note6
Uniformity		U			80		%	Note1
Uniformity		U		-	60		7/0	Note7

Note 1: Definition of optical measurement system.

Temperature = 25° C($\pm 3^{\circ}$ C); LED back-light: ON, Environment brightness < 150 lx

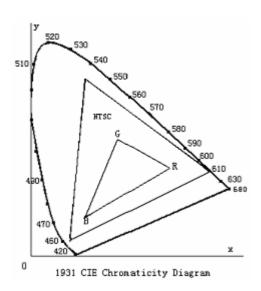


Note 2: Contrast ratio is defined as follow:


Contrast Ratio= Surface Luminance with all white pixels
Surface Luminance with all black pixels

Note 3: Response time is defined as follow:

Response time is the time required for the display to transition from black to white (Rise Time, Tr) and from white to black(Decay Time, Tf).



Note 4: Viewing angle range is defined as follow: Viewing angle is measured at the center point of the LCD.

Note 5: Color chromaticity is defined as follow: (CIE1931)

Color coordinates measured at center point of LCD.

S= <u>area of RGB triangle</u> X 100%

Note 6: Luminance is defined as follow:

Luminance is defined as the brightness of all pixels "White" at the center of display area on optimum contrast.

Note 7: Luminance Uniformity is defined as follow: Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Uniformity (U) = Minimum Luminance(brightness) in 9 points

Maximum Luminance(brightness) in 9 points

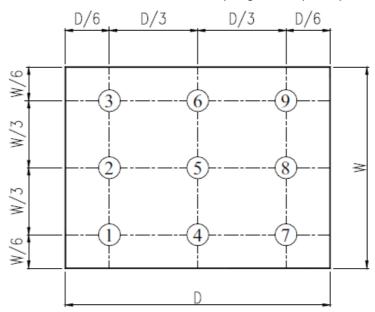


Fig. 2 Definition of uniformity

10. Environmental / Reliability Tests

No	Test Item	Condition	Judgment criteria
1	High Temp Operation	Ta=+70℃, 120hrs	Per table in below
2	Low Temp Operation	Ta=-20℃, 120hrs	Per table in below
3	High Temp Storage	Ts=+80℃, 120hrs	Per table in below
4	Low Temp Storage	Ts=-30℃, 120hrs	Per table in below
5	High Temp & High Humidity Storage	Ts=+60℃, 90% RH ,120 hours	Per table in below (polarizer discoloration is excluded)
6	Thermal Shock (Non-operation)	-30°C 30 min~+80°C 30 min, Change time:5min, 5 Cycles	Per table in below
7	ESD (Operation)	C=150pF, R=330Ω , 5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times;	Per table in below
8	Vibration (Non-operation)	10Hz~150Hz, 100m/s2,120min	Per table in below
9	Shock (Non-operation)	Half-sine wave,300m/s2,11ms	Per table in below
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	Per table in below

INSPECTION	CRITERION(after test)
Appearance	No Crack on the FPC, on the LCD Panel
Alignment of LCD Panel	No Bubbles in the LCD Panel No other Defects of Alignment in Active area
Electrical current	Within device specifications
Function / Display	No Broken Circuit, No Short Circuit or No Black line No Other Defects of Display

11. Precautions for Use of LCD Modules

11.1 Safety

The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or

clothes, wash it off immediately using soap and water.

11.2 Handling

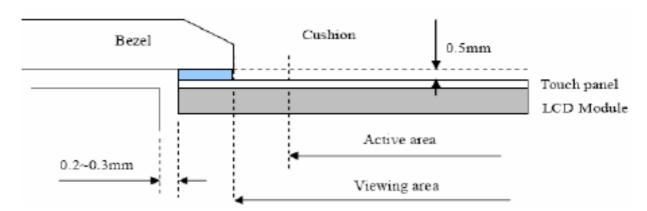
- A. The LCD and touch panel is made of plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- B. Do not handle the product by holding the flexible pattern portion in order to assure the reliability
- C. Transparency is an important factor for the touch panel. Please wear clear finger sacks, gloves and mask to protect the touch panel from finger print or stain and also hold the portion outside the view area when handling the touch panel.
- D. Provide a space so that the panel does not come into contact with other components.
- E. To protect the product from external force, put a covering lens (acrylic board or similar board) and keep an appropriate gap between them.
- F. Transparent electrodes may be disconnected if the panel is used under environmental conditions where dew condensation occurs.
- G. Property of semiconductor devices may be affected when they are exposed to light, possibly resulting in IC malfunctions.
- H. To prevent such IC malfunctions, your design and mounting layout shall be done in the way that the IC is not exposed to light in actual use.

11.3 Static Electricity

- A. Ground soldering iron tips, tools and testers when they are in operation.
- B. Ground your body when handling the products.
- C. Power on the LCD module before applying the voltage to the input terminals.
- D. Do not apply voltage which exceeds the absolute maximum rating.
- E. Store the products in an anti-electrostatic bag or container.

11.4 Storage

- A. Store the products in a dark place at +25 ℃±10 ℃ with low humidity (40% RH to 60% RH). Don't expose to sunlight or fluorescent light.
- B. Storage in a clean environment, free from dust, active gas, and solvent.


11.5 Cleaning

- A. Do not wipe the touch panel with dry cloth, as it may cause scratch.
- B. Wipe off the stain on the product by using soft cloth moistened with ethanol. Do not

allow ethanol to get in between the upper film and the bottom glass. It may cause peeling issue or defective operation. Do not use any organic solvent or detergent other than ethanol.

11.6 Cautions for installing and assembling

- A. Bezel edge must be positioned in the area between the Active area and View area. The bezel may press the touch screen and cause activation if the edge touches the active area. A gap of approximately 0.5mm is needed between the bezel and the top electrode. It may cause unexpected activation if the gap is too narrow. There is a tolerance of 0.2 to 0.3mm for the outside dimensions of the touch panel and tail. A gap must be made to absorb the tolerance in the case and connector.
- B. In order to make the display assembly stable and firm, Displaytech recommends to design some supporting at the display backside, especially for the display with tapeattached touch panel, such supporting is important and essential, or else, the display may drop-off from front after some period of time.
- C. Do not display the fixed pattern for a long time because it may develop image sticking due to the LCD structure. If the screen is displayed with fixed pattern, use a screen saver.

