\square Displaytech
 a seacomp company

TFT LCD Module

 Product Specification

 Product Specification}

162GCOG BA BC
 16×2 Characters COG

Remark:
Contents in this document are subject to change without notice. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Displaytech.

Displaytech

Email: sales@displaytech.com.hk
Website: http://www.displaytech.com.hk

Revision Record

REV	CHANGES	DATE
00	First release	Sep 2, 2019

Table of Content

Revision Record 1

1. FEATURES 3
2. MECHANICAL SPECIFICATIONS 3
3. ELECTRICAL SPECIFICATIONS 3
3-1. Absolute Maximum Ratings 3
3-2. Electrical Characteristics 4
4. POWER SUPPLY 4
5. ELECTRO - OPTICAL CHARACTERISTICS FOR LCD 4
6. TERMINAL FUNCTIONS 5
7. AC CHARACTERISTICS 6
8. INSTRUCTION SET 7
9. QUALITY SPECIFICATIONS 8
9 -1. LCM Appearance and Electric inspection Condition 8
9-2. Definition 8
9-3. Acceptance 9
9-4. Criteria 9
10. RELIABILITY 16
11. HANDLING PRECAUTIONS 17
12. OUTLINEDIMENSION 18
13. PACKAGE DIMESION 19

1. FEATURES

The features of LCD are as follows

* Display mode : STN (Y-G) /Reflective / Positive
* Display Format: Character
*IC: ST7032I
* Interface Input Data: 6800-8bit interface
* Driving Method: $\quad 1 / 16$ DUTY , $1 / 5$ BIAS
* Viewing Direction: 6 O'clock

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Dimensional Outline	$65.0(\mathrm{~L}) \times 27.7(\mathrm{~W}) \times 2.7(\mathrm{H})$	mm
LCD SIZE	$65(\mathrm{~L}) \times 19.7 / 27.7(\mathrm{~W}) \times 2.1 \mathrm{MAX}(\mathrm{H})$	mm
Viewing Area	$61.0(\mathrm{~L}) \times 15.7(\mathrm{~W})$	mm
Character Font	Character number	-

3. ELECTRICAL SPECIFICATIONS

3-1. Absolute Maximum Ratings

(Vss=0V)

Item	Symbol	Standard Value			Unit
		Min.	Type.	Max.	
Power Supply Voltage		-0.3	-	+6.0	V
LCD Drive Voltage	$\mathrm{D}_{\mathrm{LCD}}$	$7.0-\mathrm{V}_{\mathrm{SS}}$	-	$-0.3+\mathrm{V}_{\mathrm{SS}}$	V
Input Voltage	V_{IN}	-0.3	-	$\mathrm{VDD}+0.3$	
Operating Temp.	T_{OP}	0	-	+50	${ }^{\circ} \mathrm{C}$
Storage Temp.	T_{ST}	-10	-	+60	${ }^{\circ} \mathrm{C}$
Weight	-	-	9.75	-	$\mathrm{g} / \mathrm{pcs}$

Note 1) Vdd based on VSS=0V

3-2. Electrical Characteristics

(Vss=0V)

Item		Symbol	Test condition	Min.	Typ.	Max.	Unit
Logic Supply Voltage		$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$	$\mathrm{Ta}=-25^{\circ} \mathrm{C}$	4.7	5.0	5.3	V
LCD Drive Voltage (Recommended Voltage)		$\mathrm{V}_{\mathrm{OP}}=\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{S S}$	Ta $=25^{\circ} \mathrm{C}$	4.3	4.5	4.7	V
Input Voltage	"H"Level	$\mathrm{V}_{\text {IH }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	0.7VDD	--	--	V
	"L"Level	VIL		0	--	0.2VDD	V
Output Voltage	"H"Level	Vor	$\mathrm{l}_{\text {OH }}=-1.0 \mathrm{~mA}$	0.75VDD	--	--	V
	"L"Level	Vol	$\mathrm{loL}=1.0 \mathrm{~mA}$	--	--	0.8	V
Current Consumption		IDD	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{VDD} \text { or } \\ \text { VSS } \end{gathered}$	-	0.23	--	mA

NOTE: 1) Duty Ratio=1/16, Bias Ratio=1/5
2).Measuring in Dots ON-state

4. POWER SUPPLY

5. ELECTRO - OPTICAL CHARACTERISTICS FOR LCD

Item	Symbol	Temp	Min	Type	Max	Unit	Conditions	Note
Driving Voltage	Vop	$25^{\circ} \mathrm{C}$	4.3	4.5	4.7	V	-	-
Viewing Angle (Crミ2)	$\theta\left(\Phi=0^{\circ}\right)$	$25^{\circ} \mathrm{C}$	-	35	-	Degree	-	Note1 Note2
	$\theta\left(\Phi=180^{\circ}\right)$		-	35	-			
	$\theta\left(\Phi=90^{\circ}\right)$		-	30	-			
	$\theta\left(\Phi=270^{\circ}\right)$		-	45	-			
Contrast Ratio	Cr	$25^{\circ} \mathrm{C}$	-	3	6	-	-	Note3
Response Time(rise)	Tr	$0^{\circ} \mathrm{C}$	-	400	800	ms	-	Note4
		$25^{\circ} \mathrm{C}$	-	80	160			
		$50^{\circ} \mathrm{C}$	-	60	120			
Response Time(fall)	Tf	$0^{\circ} \mathrm{C}$	-	450	900	ms	-	
		$25^{\circ} \mathrm{C}$	-	100	200			
		$50^{\circ} \mathrm{C}$	-	60	120			

Note1. Definition of Angle $\Theta \& \Phi$	Note2. Definition of Viewing Angle $\Theta_{1 \&} \Theta_{2}$
Viewing Direction	Viewing Direction
Note3. Definition of Contrast Ratio	Note4. Definition of Response Time

6. TERMINAL FUNCTIONS

Pin	Symbol	Function Description
1	RES	External reset pin.
2	RS	Select registers.
3	CS	Chip selection input with pull-high resistor
4	RW	Select read or write.
5	E	Starts data read/write.
6	D0	
7	D1	Four low order bi-directional data bus pins.
8	D2	
9	D3	
10	D4	
11	D5	Four high order bi-directional data bus pins.
12	D6	
13	D7	
14	VSS	Ground
15	VDD	Power supply input.
16	VOUT	LCD driver supply voltages.

7. AC CHARACTERISTICS

Timing Characteristics

68 Interface

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$								
Item	Signal	Symbol	Condition	$\begin{gathered} \hline \mathrm{VDD}=2.7 \text { to } 4.5 \mathrm{~V} \\ \text { Rating } \\ \hline \end{gathered}$		$\begin{gathered} \text { VDD }=4.5 \text { to } 5.5 \mathrm{~V} \\ \text { Rating } \end{gathered}$		Units
				Min.	Max.	Min.	Max.	
Address hold time	RS	tah6	-	20	-	20	-	ns
Address setup time	RS	taw6		20	-	20	-	
System cycle time	RS	tcyC6	-	400	-	280	-	ns
Data setup time	D0 to D7	tDS6	-	100	-	80	-	ns
Data hold time	D0 to D7	tDH6		40	-	20	-	
Access time	D0 to D7	tacc6	$C \mathrm{~L}=100 \mathrm{pF}$	-	500	-	400	ns
Output disable time	D0 to D7	toh6		300	-	150	-	
Enable Rise/Fall time	E	$t \mathrm{tr}, \mathrm{ff}$	-	-	20	-	20	ns
Enable H pulse time	E	tewh	-	200	-	120	-	ns
Enable L pulse time	E	tewl	-	150	-	130	-	ns

[^0]
8．INSTRUCTION SET

Instruction Table：
ST7032－0D（ITO option OPR1＝1，OPR2＝1）

67－64	［10］	0101	0010	0011	0100	0101	0110	0111	10010	1001	1010	1011	1100	1101	1110	1111
ロロロ	明	昭	\square	－	㬉		姐明				㬰	兆皿	洓吅	明		里㫣
［－I	泪	澛明	世明	明	\％		－					明	昭且			㕩曲
0010		明		－									目	\＃	世里	
0011		央\＃		\＃	囲曲	\＃\＃\＃	曲	＂F\％		里		囲	\％	鰽	世里	
010		明			謱	曲曲	\％			\％		摬	明		明	
0101		－			品	詚言							㫣泪		此	囲
0110		为			詚曲	明			－	㤩	－\＃\＃	－	䜹里			
0111					明	昭		\％	洓	囲		\＃	－			
100			囲	\％										明	\％	世明
1001	\square	誢	是明		浬		明				摬	\square	世誢		沮目	
1010	H\＃\＃			纽	摬		曲明	曲	目	为		\％	\％		且且	
1011	浬	明		泪		潩里			浬			时			－	
110	世 \＃		明㬰		明			珲	囲			㬉				
1101		明				異明					惷				－	
1110		國		里								时畐				世泪
1111						最					\％			澛㬰		

9. QUALITY SPECIFICATIONS

9 -1. LCM Appearance and Electric inspection Condition

1. Inspection will be done by placing LCM 30 cm away from inspector's eyeballs under normal illumination.

2. View Angle: with in 45° around perpendicular line.

9-2. Definition

1, COB

2, Heat Seal

3, TAB and COG

TAB

COG

9-3. Acceptance

Major defect:

$$
\text { AQL }=0.65
$$

Minor defect:
$A Q L=1.5$

9-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standards	
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing , extra, wrong component or wrong orientation		Reject
Minor	Component position shift	$\begin{aligned} & X<3 / 4 Z \\ & Y>1 / 3 D \end{aligned}$	Reject Reject
Minor	Component tilt soldering pad	$Y>1 / 3 D$	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	Inspection Standards		
Major	Crack/breakage	Anywhere		Reject
Minor	Frame Scratch	W	L	Acceptable of Scratch
		$\mathrm{W}<0.1 \mathrm{~mm}$	Any	Ignore
		$0.1 \leqslant \mathrm{~W}<0.2 \mathrm{~mm}$	$\mathrm{L} \leqslant 5.0 \mathrm{~mm}$	2
		$0.2 \leqslant \mathrm{~W}<0.3 \mathrm{~mm}$	$\mathrm{L} \leqslant 3.0 \mathrm{~mm}$	1
		$W \geqslant 0.3 \mathrm{~mm}$	Any	0
		Note: 1. Above criteria applicable to scratch lines with distance greater than 5 mm . 2. Scratch on the back side of frame (not visible) can be ignored.		
Minor	Frame Dent , Prick$\Phi=\frac{\mathrm{L}+\mathrm{W}}{2}$			ptable of / Pricks
		$\Phi<1.0 \mathrm{~mm}$		2
		$1.0<\Phi<1.5 \mathrm{~mm}$		1
		$1.5 \mathrm{~mm}<\Phi$		0
		Note : 1. Above criteria applicable to any two dents / pricks with distance greater than 5 mm 2. Dent / prick on the back side of frame (not visible) can be ignored		
Minor	Frane Deformation	Exceed the dimension of drawing		
Minor	Metal Frame Oxidation	Any rust		

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standards	
Minor	Tilted soldering	Within the angle $+5^{0}$	Acceptable
Minor	Uneven solder joint/bump		Reject
Minor	Hole L+W	Expose the conductive line	Reject
	2	Ф > 1.0 mm	Reject
Minor	Position shift	Y > 1/3D	Reject
		X > 1/2Z	Reject

5. Heat seal /TCP /FPC

Defect	Inspection Item		Inspection Standards	
Major	Scratch expose conductive layer		Reject	
Minor	Hole	$\Phi=\frac{L+W}{2}$	Reject	
Major	Adhesion strength		Less than the specification	Reject
Minor	Position shift	$\mathrm{Y}>1 / 3 \mathrm{D}$	Reject	
Major	Conductive line break	$\mathrm{X}>1 / 2 \mathrm{Z}$	Reject	

6. Backlight backing protective Film and Others

Defect	Inspection Item	Inspection Standards	
Minor	Backlight dirty,prick	Acceptable number of units	
		$\Phi<0.25 \mathrm{~mm}$	Ignore
		$0.25 \mathrm{~mm}<\Phi<0.35 \mathrm{~mm}$	2
		$0.35 \mathrm{~mm}<\Phi<0.45 \mathrm{~mm}$	1
		$\Phi>0.45 \mathrm{~mm}$	0
		The distance between any two spots should be $>5 \mathrm{~mm}$ Any spot/dot/void outside of viewing area is acceptable	
Minor	Protective film tilt	Not fully cover LCD	Reject

7. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

8. Inspection Specification of LCD

DEFECT	ITEM	CRITERIA
1 Crack (minor)		1. $X>1 / 8$ length of the long side REJ 2. Y :damaged, $1 / 3$ of the adhesive exposed REJ 3. Ignoring Z
2 Segment Deformation (major)		1. Ignoring the length 2. $B>1 / 3$ width of conductor REJ
3 Segment Deformation (major)		Referring to the project-drawing
4 Segment Deformation (major)		1. $Z<T, X, ~ Y$ not reaching $1 / 2$ width of main seal or conductive point . REJ $2 . A>1 / 3 D$.
5 Crack (minor)		1. $X>1 / 8$ length of the long-side REJ 2. $Y 1 / 3$ of the Adhesive exposed REJ
6 Crack (minor)		1. At the side of conductor $Z \leq 1 / 2 T$ ACC 2. At the side of non- conductor $Z \leq 1 / 2 T$

7 Crack (minor)		1. $X \leq 2 \mathrm{~mm}$ and $Y \leq 1.5 \mathrm{~mm}$ 2. $X>2 \mathrm{~mm}$ but not attach pin $Y \leq 1 / 2 D$ 3. $X \leq 1 \mathrm{~mm}$ and $Y \leq 3 / 4 D$, Ignoring Z			ACC ACC ACC
8 Crack (major)		REJ			
9 Dirty spots Round type (minor)	Dirty spots Round type $\varnothing=(L+W) / 2$	POSITIVE MODE $0 \mathrm{~mm}<\varnothing \leq 0.3 \mathrm{~mm}$ $0.3 \mathrm{~mm}<\varnothing \leq 0.4 \mathrm{~mm}$ $0.4 \mathrm{~mm}<\varnothing \leq 0.5 \mathrm{~mm}$ $0.5 \mathrm{~mm}<\varnothing$		ACC Q Ignore 4 2 0	
10 minor	Polarizer deviated from the glass	1.Protruding the edge of glass beyond 0.2 mm (Total dimension of glass must be within) the project-drawing permissible tolerance 2. Distance inside the edge of glass is beyond 1.4 mm REJ If project-drawing has other specifications refer to them			
11	Fiber Linear type Polarizer scratch (of visible state)	DIMENSION			
		LENGTH	WIDTH	ACC QTY	
			$\leq 0.08 \mathrm{~mm}$	Ignore	
		$\leq 4 \mathrm{~mm}$	$\leq 0.10 \mathrm{~mm}$		
		$\leq 3 \mathrm{~mm}$	$\leq 0.12 \mathrm{~mm}$		
		$W>0.12 \mathrm{~mm}$		0	
		lgnoring it, if beyond view area			

$\begin{gathered} 12 \\ \text { (minor) } \end{gathered}$	$\varnothing=(L+W) / 2$ Air bubble between glass and polarizer, polarizer with folding trace(of visible state) $\varnothing=(L+W) / 2$	POSITIVE MODE	ACC QTY
		$\varnothing \leq 0.3 \mathrm{~mm}$	Ignore
		$0.3 \mathrm{~mm}<\varnothing \leq 0.4 \mathrm{~mm}$	4
		$0.4 \mathrm{~mm}<\varnothing \leq 0.5 \mathrm{~mm}$	2
		$0.5 \mathrm{~mm}<\varnothing$	0
		Ignoring it, if beyond view area	

$\begin{gathered} 13 \\ \text { (minor) } \end{gathered}$	Polarizer pricked and damaged(spots) (of visible state)$\varnothing=(L+W) / 2$	Positive mode	Acc qty	
		$\Phi \leq 0.8 \mathrm{~mm}$	2	
		$0.8<\Phi \leq 1.0 \mathrm{~mm}$	1	
		$\varnothing>1.0 \mathrm{~mm}$	0	
		Ignoring it, if beyond view area		
$\begin{gathered} 14 \\ \text { (minor) } \end{gathered}$	Conductor dirty	With oil-stain or foreign substance		REJ
$\begin{gathered} 15 \\ \text { (minor) } \end{gathered}$	Polarizer without protected film	REJ		
$\begin{gathered} 16 \\ \text { (minor) } \end{gathered}$	The width of the Adhesive	$\leq 1 / 2$ of the average width $\geq 3 / 2$ of the average width		REJ REJ
$\begin{gathered} 17 \\ \text { (minor) } \end{gathered}$	The Adhesive deviation	Beyond view area		REJ
$\begin{gathered} 18 \\ \text { (major) } \end{gathered}$	The Adhesive impure	Zof the width of adhesive REJ (Air bubble in the adhesive= of the width of the Adhesive REJ)		
$\begin{gathered} 19 \\ \text { (major) } \end{gathered}$	The Adhesive Varicolored	REJ		
$\begin{aligned} & 20 \\ & \text { (minor) } \end{aligned}$	Seal resin discolored or off the edge of the glass			REJ
$\begin{gathered} 21 \\ \text { (minor) } \end{gathered}$	The height, width and deviation quantity of seal resin	Beyond project-	wing permissible	REJ
$\begin{gathered} 22 \\ \text { (minor) } \end{gathered}$	Permeating resin (Permeating quantity of seal resin)	Beyond view area REJ(If customers have special requirements, makeadditionally.)		
$\begin{gathered} 23 \\ \text { (major) } \end{gathered}$	Length and type of a pin	Referring the project-drawing		

24 (minor)	Pin leaning	If project-drawing has specifications, refer to them
25 (minor)	Pin with resin except its head (including pin-let)	
26 (minor)	Pin-resin uncured	REJ
27 (minor)	Polarizer dirty or space between Polarizer and glass with pin-resin	REJ

$\begin{gathered} 33 \\ \text { (minor) } \end{gathered}$	Point matrix, Pin hole, vacancy		ACC QTY
		$0 \mathrm{~mm}<\varnothing \leq 0.3 \mathrm{~mm}$	Ignore
		$0.3 \mathrm{~mm}<\varnothing \leq 0.4 \mathrm{~mm}$	4
		$0.4 \mathrm{~mm}<\varnothing \leq 0.5 \mathrm{~mm}$	2
		$0.5 \mathrm{~mm}<\varnothing$	0

$\begin{gathered} 34 \\ \text { (minor) } \end{gathered}$	Protrusion	$\begin{aligned} & \text { 1. } \mathrm{A}>1.0 \mathrm{~mm} \\ & \text { 2. } \mathrm{B}>0.2 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { REJ } \\ & \text { REJ } \end{aligned}$
	Point matrix: Combination of character inclined	1. Quantity deformed $\mathrm{A} \leq \pm 15 \%$ 2.Quantity deformed $\mathrm{B} \leq \pm 15 \%$	$\begin{aligned} & \hline \mathrm{ACC} \\ & \mathrm{ACC} \end{aligned}$
$\begin{gathered} 36 \\ \text { (minor) } \end{gathered}$	Color variation	Referring to the limitation of the sample	
$\begin{gathered} \hline 37 \\ \text { (major) } \\ \hline \end{gathered}$	Segment crossing Segment missing		REJ
$\begin{gathered} \hline 38 \\ \text { (major) } \end{gathered}$	Conduction of silver-dot out of condition		REJ
$\begin{gathered} 39 \\ \text { (major) } \\ \hline \end{gathered}$	Incomplete segment	Referring to the limitation of the sample	
$\begin{gathered} 40 \\ \text { (major) } \\ \hline \end{gathered}$	Incomplete common		REJ
$\begin{gathered} 41 \\ \text { (major) } \end{gathered}$	Excessive segment		REJ
$\begin{gathered} 42 \\ \text { (minor) } \end{gathered}$	Reacting slowly	Referring to the limitation of the sample	
$\begin{gathered} 43 \\ \text { (major) } \end{gathered}$	Strong current	$22 \mathrm{uA} / \mathrm{Cm}^{2}$	REJ
$\begin{gathered} 44 \\ (\text { minor } \end{gathered}$	Uneven surface	Referring to the criteria of item 9	

10. RELIABILITY

NO.	Item	Condition	Criterion
1	High Temperature Operating	$50^{\circ} \mathrm{C}, 240 \mathrm{Hrs}$	
2	Low Temperature Operating	$0^{\circ} \mathrm{C}, 240 \mathrm{Hrs}$	No defect in cosmetic and operational function allowable.
3	High Temperature Storage	$60^{\circ} \mathrm{C}, 240 \mathrm{Hrs}$	
4	Low Temperature Storage	$-10^{\circ} \mathrm{C}, 240 \mathrm{Hrs}$	
5	High Humidity	$40^{\circ} \mathrm{C}, 90 \% \mathrm{RH}, 240 \mathrm{Hrs}$	
6	Thermal Shock	$-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ $(30 \mathrm{Min})(5 \mathrm{Min})(30 \mathrm{Min})$ 10 Cycles	l

Note: 1) For restrict products, the test conditions listed as above must be revised.

11. HANDLING PRECAUTIONS

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.
(2) Caution of LCD handling \& cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichlorotrifluoroethane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.
Do not use the following solvent:

- Water
- Acetone
- Aromatics
(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.
(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
(5) Caution for operation
- It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
- Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
Usage under the relative condition of $40^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$ or less is required.
(6) Storage

In the case of storing for a long period of time (for instance ,for years) for the purpose or replacement use, The following ways are recommended.

- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
(7) Safety
- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.
Which should be burned up later.
- When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

12. OUTLINEDIMENSION

13．PACKAGE DIMESION

規格要求：
每個外箱內放 2 個內箱。
一個內箱裝X層產品，共需X個吸塑盤，
每層吸塑之間交錯180度放置，頂部放置1層空吸塑一個吸塑盤裝 $\mathrm{X} * \mathrm{X}=\mathrm{XX}$ 個模組，
每層產品底部與頂部各放一層珍珠棉每個內箱里放 $\mathrm{X} * \mathrm{X} *(\mathrm{X}-1)=\mathrm{XX}$ 個模組．

一個外箱裝模組的數量： $\mathrm{X} * \mathrm{X} *(\mathrm{X}-1) * 2=\mathrm{XXX}$
最后，內箱和外箱封口

[^0]: Note: All timing is specified using 20% and 80% of VDD as the reference.

